Engineering polar discontinuities in honeycomb lattices.

نویسندگان

  • Marco Gibertini
  • Giovanni Pizzi
  • Nicola Marzari
چکیده

Unprecedented and fascinating phenomena have been recently observed at oxide interfaces between centrosymmetric cubic materials, where polar discontinuities can give rise to polarization charges and electric fields that drive a metal-insulator transition and the appearance of a two-dimensional electron gas. Lower-dimensional analogues are possible, and honeycomb lattices offer a fertile playground, thanks to their versatility and the extensive ongoing experimental efforts in graphene and related materials. Here we suggest different realistic pathways to engineer polar discontinuities in honeycomb lattices and support these suggestions with extensive first-principles calculations. Several approaches are discussed, based on (i) nanoribbons, where a polar discontinuity against the vacuum emerges, and (ii) functionalizations, where covalent ligands are used to engineer polar discontinuities by selective or total functionalization of the parent systems. All the cases considered have the potential to deliver innovative applications in ultra-thin and flexible solar-energy devices and in micro- and nano-electronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Klein tunneling in deformed honeycomb lattices.

We study the scattering of waves off a potential step in deformed honeycomb lattices. For deformations below a critical value, perfect Klein tunneling is obtained; i.e., a potential step transmits waves at normal incidence with nonresonant unit-transmission probability. Beyond the critical deformation a gap forms in the spectrum, and a potential step perpendicular to the deformation direction r...

متن کامل

A numerical adaptation of self-avoiding walk identities from the honeycomb to other 2D lattices

Recently, Duminil-Copin and Smirnov proved a long-standing conjecture of Nienhuis that the connective constant of self-avoiding walks (SAWs) on the honeycomb lattice is √ 2 +√2. A key identity used in that proof depends on the existence of a parafermionic observable for SAWs on the honeycomb lattice. Despite the absence of a corresponding observable for SAWs on the square and triangular lattice...

متن کامل

Asymptotic Approximation of Discrete Breather Modes in Two-Dimensional Lattices

We outline the small amplitude asymptotic approximation for breathers for one-dimensional chains, and two-dimensional lattices with square, triangular/hexagonal, and honeycomb geometries. Two-dimensional lattices are complicated due to the resulting NLS-type equation being either elliptic or hyperbolic in nature. This gives rise to an additional constraint in addition to the usual condition on ...

متن کامل

مطالعه مدل هایزنبرگ به روش خودسازگار گاؤسی بر روی شبکه‌ها‌ی لانه زنبوری و الماسی

The classical J1-J2 Heisenberg model on bipartite lattice exhibits "Neel" order. However if the AF interactions between the next nearest neighbor(nnn) are increased with respect to the nearest neighbor(nn), the frustration effect arises. In such situations, new phases such as ordered phases with coplanar or spiral ordering and disordered phases such as spin liquids can arise. In this paper we ...

متن کامل

Weak ferromagnetism and spiral spin structures in honeycomb Hubbard planes

Within the Hartree FockRPA analysis, we derive the spin wave spectrum for the weak ferromagnetic phase of the Hubbard model on the honeycomb lattice. Assuming a uniform magnetization, the polar (optical) and acoustic branches of the spin wave excitations are determined. The bipartite lattice geometry produces a qdependent phase difference between the spin wave amplitudes on the two sub-lattices...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014